
Submodularity in Team Formation Problem∗

Avradeep Bhowmik† Vivek Borkar‡ Dinesh Garg§ Madhavan Pallan¶

Abstract

We consider the team formation problem where the goal is

to find a team of experts for a specific project. In the past,

several attempts have been made to formulate this problem

and each formulation focuses only on a subset of design crite-

ria such as skill coverage, social compatibility, economy, skill

redundancy, etc. In this paper, for the first time, we show

that most of the important design criteria for this problem

can be fully modeled within one single formulation as an un-

constrained submodular function maximization problem. In

our formulation, the submodular function turns out to be

non-negative and non-monotone. The maximization of this

class of submodular function is much less explored than its

monotone constrained counterpart. A few recent works [7] [4]

have come up with a simulated annealing based randomized

approximation scheme for this problem with an approxima-

tion ratio of 0.41. In this paper, we customize this algorithm

to our formulation and conduct an extensive set of experi-

ments to show its efficacy. Our proposed formulation offers

several advantageous features over the existing formulations

including skill cover softening, better team communication,

and connectivity relaxation. Unlike previous formulations,

the skill cover softening feature allows a designer to specify

Must Have and Should Have skills. Similarly, through bet-

ter team communication, we avoid the restriction that all the

communication among team members should pass through

only the team members and not the outsiders. Finally, con-

nectivity relaxation feature alleviates the constraint of whole

team being connected and thereby, lowering the cost.

1 Introduction

A commonly occurring problem faced by any organi-
zation that works with skilled human resources is to
put together a team of experts for a specific project.
This problem is generally referred to as the team for-
mation problem. An example of this could be a soft-
ware firm putting together a team of software engineers
for the development of a specific product. The success
of the project depends on multiple factors which serve
as design criteria for the team formation problem like

∗This work was supported by IBM SUR grant.
†University of Texas, Austin, avradeep.1@utexas.edu
‡IIT Bombay, India, borkar@ee.iitb.ac.in
§IBM Research, India, garg.dinesh@in.ibm.com
¶IBM Research, India, mapallan@in.ibm.com

skill coverage, social compatibility, and economy. That
is, the team must be formed in a way that the team
members collectively possess the required skills for the
project and the team members are compatible with each
other and can work well in a team. Also, it doesn’t help
making the team larger than necessary, or including re-
dundant members in the team- the team should be as
small as possible while still satisfying the necessary con-
straints. There could be other secondary design criteria
too while forming the team, like load balancing across
team members, ensuring the presence of some specific
members in the team, etc.

The purpose of this paper is to advance the state-
of-the-art in the team formation problem by showing
that this problem exhibits a very natural submodular
structure and most of the design criteria can be modeled
within one single formulation, which is unconstrained
submodular function maximization - an NP-hard prob-
lem for arbitrary submodular functions. We show that
this submodular formulation is quite generic and most of
the existing formulations turn out to be special cases of
this. Further, this new formulation offers several advan-
tages and extensions over and above the existing formu-
lations and thereby, advances our understanding about
this problem.

1.1 Prior Art The team formation problem has been
studied since the mid 2000s in the Operations Research
community [3, 15, 2, 14]. In early works, the problem
used to be modeled as purely an assignment or matching
problem, where the goal was to match people with
required skills. The solution methodology for these
formulations spanned across simulated annealing [2],
branch-and-cut [15], and genetic algorithms [14].

As mentioned earlier, this problem has an obvious
and natural social aspect but this aspect was paid no
attention to until very recently when Lappas et al [10]
argued that apart from ensuring the required skills set,
it is essential to take into account the social well-being of
the team which refers to the ease of communication and
willingness to collaborate among team members. The
authors in [10] proposed the idea of quantifying social
well-being of a team by means of a communication cost
among the team members which is typically evaluated
from a given social graph whose edge weights represent

the ease (or difficulty) of communication among the
team members. The authors in [10] defined two different
cost criteria - the diameter and the minimum spanning
tree (MST) on the subgraph of selected team members.
Approximation algorithms were proposed to find a
team of experts possessing a given set of skills while
minimizing these cost criteria.

Many extensions of [10] have surfaced over the past
few years. Kargar et al [8] pointed out a few limitations
in the cost criteria in [10] and proposed two modified
cost functions - sum of distances and leader distance.
A followup paper by Kargar et al [9] further extended
the framework of [8] and included the cost of using
an expert’s services in conjunction with communication
cost. The work by Li et al [11] extended the work of
Kargar et al [10] in the direction of generalized task
where a specific number of experts are required against
each skill. A similar extension was studied by Gajewar
et al [6] using a slightly different communication cost
function which is based on the graph density and
is a generalization of the cost function used in [10].
Recently, Anagnostopoulos et al [1] extended the work
of Lappas et al [10] where tasks arrive in an online
fashion and it is required to balance the work load across
team members. In a related paper, Majumder et al [12]
defined a notion of capacity for each expert and put an
additional constraint of capacity violation.

To summarize, the initial work of Lappas et al
[10] and all its subsequent extensions [8, 9, 11, 6, 1,
12] formulated the team formation problem as some
kind of a combinatorial optimization problem and gave
approximation algorithms for the same, as the original
problems turned out to be NP-hard. For all these
formulations, skill cover is a default constraint which
ensures that a required set of skills are available in the
selected team. Further, all these formulations maximize
some kind of a quality score for the selected team which
encapsulates two key dimensions - social compatibility
and the formation cost of the team which is measured
via some kind of a communication cost amongst team
members and via the included experts’ service costs
respectively.

1.2 Contributions and Outline In this paper, we
propose a generic formulation based on the theory of
submodular function optimization [5] 1. Our motivation
stems from that fact that the selected team is a subset
of the overall pool of experts and hence a natural way
to formulate this problem is in the form of optimizing
a set function applied to subsets of experts. Our
contributions are detailed below.

1A brief introduction to submodular functions and related
results are given in Appendix A

1. To the best of our knowledge, we show for the first
time that most of the important design criteria for
this problem- including skill cover, social compati-
bility, and economy- can be fully modeled within
one single formulation as an unconstrained sub-
modular function maximization problem - which is
an NP-hard problem for general submodular func-
tions. In particular, we show that the skill cover
constraint proposed in [10, 8, 9] can be expressed
in the form of a submodular function in our for-
mulation. Moreover, this formulation allows for a
softer form of skill constraint - that is, a designer
can specify compulsory and optional skills require-
ments separately.

2. We show that while its not possible to express the
communication cost functions proposed by [10] as
submodular or supermodular functions, it is possi-
ble to do so for the improved functions suggested
by [8, 9], namely sum of distances and leader dis-
tance. We further propose modifications to these
two communication cost functions and rectify the
limitation that there should be only one designated
expert in the team for every skill.

3. We also suggest a few additional naturally arising
constraints for the team formation problem and
show that they can be folded into the overall
submodular formulation as well.

4. Finally, we show that in our formulation, the
submodular function is non-negative and non-
monotone. Maximization of this class of submod-
ular functions has been explored to a lesser extent
than that of its monotone counterpart. A few re-
cent works [7] [4] have come up with randomized
approximation schemes for this problem with ap-
proximation factors of upto 0.41. In this paper, we
customize this algorithm to our setting and conduct
an extensive set of experiments to show its efficacy.

Our formulation offers several advantages and allows for
further extensions over the existing formulations.

1. Skill Cover Softening: In our formulation, cov-
ering the required skill set is a soft constraint in
the sense that we allow designer specifying an im-
portance level for each skill to control the trade-off
between skill coverage and communication cost or
economy. A skill is dropped in the final composition
of the team if there are significant logistical bene-
fits from doing so like having an especially smaller
team size or much better connectivity within the
team. The designer can enforce a skill requirement
as a hard constraint by setting up very high impor-
tance levels.

2. Better Team Communication: Lappas et al
[10] assumed that social connectivity between any
two team members should only include the connec-
tions they share via other team members. Like [8],
our formulation allows communication among team
members via all the nodes in the entire social graph
irrespective of whether they are part of the team or
not. This makes sense because the communication
cost between two people in the team has nothing
to do with the team itself. Two people can still
be compatible if they have low communication cost
in the overall social network even if their mutual
connections are not a part of the same team.

3. Connectivity Relaxation: Unlike many existing
formulations, we never enforce the requirement that
the selected team should represent a connected
subgraph of the given social network. In normal
circumstances, this connectivity is likely to happen
anyway but for certain cases, this requirement may
introduce unnecessary redundancy in the team. For
instance, if two people with a mutual contact are
enough for the team, there is no reason for the
mutual contact to be in the team as well if he adds
no value. This seems like a strong relaxation, but
again, as long as the communication cost between
any two members is minimized, the path between
them shouldn’t matter.

2 Problem Setup

Let V = {v1, v2, . . . , vn} be the set of experts in an
organization. We use [V]k = {A : A ⊆ V, |A| = k} to
denote k-sized subsets of V . Let S = {s1, s2, . . . , sm}
be a set of m different skills. Each expert v ∈ V has
a set of skills, denoted by Sv ⊆ S. That is, Sv = {s |
s ∈ S; expert v has skill s}. For example, in a software
development organization, the people may have skill sets
such as {Python, Ruby, R}, {Java, C++}, {Haskell,
OCaml, Lambda}, etc.

These experts are connected together in a social
network which is modeled as an undirected weighted
graph G = (V,E,W). The edge weight wij ≥ 0 for
an edge between experts vi and vj denotes the cost
of communication and collaboration between these two
experts. The lower the value of wij , the easier it is for
these two individuals to communicate and collaborate.
Without loss of generality, we assume that the graph
G is connected - we can transform every disconnected
subgraph to a connected one by simply adding very
high-weight (say, a weight higher than the sum of all
pairwise shorted paths in G) edges between every pair
of nodes that belong to different connected components.

In what follows, we describe each of the following

design requirements and demonstrate a way to express
them via submodular/supermodular functions - (i) skill
coverage, (ii) social compatibility, (iii) teaming cost, (iv)
other miscellaneous requirements.

2.1 Submodularity in Skill Coverage A project
P ⊆ S is defined as a set of skills required to complete
the project. A team T ⊆ V is a subset of experts. The
team T is said to cover the project P if for every skill
s required in project P , there is someone in the team
T who possesses that skill. Formally, let ST =

⋃
v∈T Sv

be the set of all skills possessed by at least one member
in a team T . The team T is said to cover project P , if
P ⊆ ST . For each skill s ∈ S, we define a set Vs ⊆ V
representing the set of all those experts who posses this
skill. For a given skill s, we define an indicator set
function fskill(·, s) : 2V 7→ {0, 1} over the space of all
possible teams (i.e. subsets) of the given set of experts.
Formally,

fskill(T, s) = 1{T∩Vs 6=∅};∀s ∈ S, T ∈ 2V(2.1)

where 1{·} is an indicator function and 2V denotes the
power set of V . This function takes a value 0 for any
subset of experts who do not posses a given target skill
s and 1 otherwise. An interesting and useful property
about this set function is captured in the following
lemma.

Lemma 2.1. For any given skill s ∈ S, the function
fskill(·, s) is a submodular function.

Proof. This follows from the first order differences based
definition of submodular functions given in Appendix A
as part of the supplementary material.

A natural extension of the indicator function fskill(·, ·)
to the skillset required in project P is as follows.

fskill(·, P) =
∏

s∈P fskill(·, s)(2.2)

Unfortunately, the function fskill(·, P) is not as well
behaved as fskill(·, s) (as shown in the next lemma).

Lemma 2.2. The function fskill(·, P) given in Equation
(2.2) is neither a submodular nor a supermodular func-
tion for any P ⊆ S having |P | > 1.

Proof. See Appendix B.

Note that it is the multiplicative form of this function
fskill(·, P), given in Equation (2.2), which takes away its
nice properties. Therefore, we are motivated to redefine
this function in the additive form as follows. We call
this function the skill coverage function.

Definition 1. (Skill Coverage Function) For a
given project P ⊆ S, the skill coverage function is de-
fined as follows.

fskill(·, P) =
∑

s∈P Csfskill(·, s)(2.3)

where for each skill s ∈ P , the weight Cs ≥ 0 denotes
its importance level.

Lemma 2.3. The function fskill(·, P) defined by Equa-
tion (2.3) is a submodular function for any P ⊆ S.

Proof. This follows from the fact that a non-negative
weighted sum of submodular functions is also a sub-
modular function [5].

In view of the above definition, the skill coverage design
requirement of the team formation problem can be
expressed in the equivalent form of maximizing the
submodular function fskill(·, P) with an appropriate
choice of weights Cs. By choosing a higher weight Cs for
the skill s ∈ P , we can make this skill a compulsory skill
whereas, by choosing a lower weight, we can make it an
optional skill. Thus, this formulation avoids the need of
having a constraint for the skill coverage and instead it
allows folding this constraint into the objective function
itself. Moreover, it also allows making the possession of
some skills hard constraints and the possession of some
others soft constraints. If all the skills in a given project
are equally important then we can set Cs = C ∀s ∈ P .
Choosing a sufficiently high value for C would ensure
picking all the required skills in the team selected.

2.2 Submodularity in Social Compatibility So-
cial compatibility is the second most important design
consideration in the team formation problem. Social
compatibility can be expressed in the form of a com-
munication cost as suggested by many recent works
[10, 8, 9, 11, 6, 1]. In what follows, we list important
cost functions that have either been proposed in the lit-
erature or are quite natural in the context.

• Diameter [10]: Given a team T ⊆ V , the
diameter of the team is defined as

Diameter = max(vi,vj)∈T×T dT (vi, vj)(2.4)

where dT (vi, vj) is the shortest path distance be-
tween vertices vi and vj over the subgraph GT of
the given social graph obtained by restricting on T .

• Minimum Spanning Tree (MST) [10]: Given
a team T ⊆ V , the MST cost is the cost of the
minimum spanning tree on the subgraph GT .

Its important to note that both of these costs depend on
the subgraph GT induced by the selected team T . Addi-
tionally, these two cost functions have some limitations

as pointed out by Kargar et al [8]. Motivated by this,
Kargar et al [8] suggested two modified cost functions
- sum of distances and leader distance. These modified
cost functions are based on a critical assumption - for
every skill s that is required in project P , there is only
one expert vs in the team T , who is designated to cover
this skill in this team. It is possible that the same expert
may cover multiple skills.

• Sum of Distances [8]: Given a team T ⊆ V , the
sum of distances for this team is defined as

sumDistance =
∑

(si,sj)∈P×P d(vsi , vsj)

where d(vsi , vsj) denotes the shortest possible
length of a path in the given social graph which
connects two team members such that one of them
is designated to cover the skill si and the other one
is designated to cover the skill sj .

• Leader Distance [8]: Given a project P ⊆ S, a
team T ⊆ V , and a leader l ∈ V , the leader distance
of T with respect to l is defined as

leaderDistance =
∑

s∈P d(vs, l)

where d(vs, l) denotes the length of the shortest
path (in the given social graph) between leader l
and the designated team member for skill s.

Note that for both of these cost functions, the distance
between two experts is defined over the whole graph G
and not over the subgraph GT . Also, for a given team
T comprising of expert(s) covering each and every skill
required in project P , the above costs depend not just
on T and P alone but also the mapping of skills to
the team members who cover these skills. We further
extend these two cost functions in order to relax the
assumption that every skill is covered by only one expert
in the team and this mapping between the skills and the
team members is announced a priori.

• Modified Sum of Distances: For a team T ⊆ V ,
the modified sum of distances is given as

modSumDistance =
∑

(si,sj)∈P×P d(si, sj , T)

where d(si, sj , T) is the length of the shortest
path (in the given social graph) between two team
members such that one of them has skill si and the
other one has skill sj . More formally,

d(si, sj , T) = min
(vi,vj)∈T×T
vi∈Vsi

,vj∈Vsj

d(vi, vj)

where d(vi, vj) is the shortest path length between
vertices vi and vj in the given social graph. Note

that this function considers the communication
cost between pairs of skills rather than between
pairs of team members. Often, the communication
between certain pairs of skills are more critical than
others and hence require extra care to minimize
the distance between such critical pairs of skills.
For example, in a project, there could be two
sub-groups of the team members, one handling
the theoretical part and the other handling the
implementation part. In such a scenario, the
members of any sub-group need to communicate
among themselves more often than the members
of the other sub-group. This can be achieved by
extending the above function so as to imbue each
pair of skills with a positive weight which depends
on how critical it is for the members responsible for
those skills to work together. Thus, we can define a
weighted version of the Modified Sum of Distances
as

∑
(si,sj)∈P×P wij d(si, sj , T), where wij ≥ 0 is

the weight for skill pair (si, sj).

• Modified Leader Distance: Given a project
P ⊆ S, a team T ⊆ V , and a leader l ∈ V , the
modified leader distance is given by

modLeaderDistance =
∑

s∈P d(s, l, T)

where d(s, l, T) denotes the shortest possible length
of a path in the given social graph which connects
leader l with a team member who has skill s. More
formally, d(s, l, T) = minv∈T∩Vs d(v, l). Similar to
the modified sum of distances function, we also
define the weighted version of the modified leader
distance as

∑
s∈P ws d(s, l, T), where ws ≥ 0 is the

weight assigned to the particular skill s.

• Sum of Degrees: This is a new cost function
introduced by us. For a given team T , this cost
is given by the negative of the sum of the degrees
of all the team members. For any given team
member, while counting the degree, we include all
his neighbors in the entire social graph irrespective
of whether they are a part of the given team T
or not. It is motivated by the fact that the more
connected a member is, the more likely he is to be
a good team player and therefore we aim towards
minimizing this function.

Given a project P , and a social graph G, let the function
fsocial(·, P,G) : 2V 7→ R+ denote the communication
cost function of a team. We call this function the
social compatibility cost function which can be expressed
as any of the above five cost functions. Ensuring
social compatibility in the team implies minimizing this
social compatibility cost function. In what follows, we

highlight the submodular/supermodular properties of
this function.

Lemma 2.4. Given a project P and a social graph G,
the social compatibility cost function fsocial(·, P,G) is

1. Neither submodular nor supermodular if it is de-
fined as either the diameter or the MST cost.

2. Modular if it is defined as the sum of degrees.

3. Supermodular if it is defined as the sum of distances
and modular if it is defined as the leader distance
with a pre-defined leader.

4. Supermodular if it is defined as either the modified
sum of distances or the modified leader distance.

Proof. See Appendix B.

Note, conic combinations preserve submodularity.
Therefore, any non-negative weighted combination of
the modular or supermodular functions defined above
would also be a supermodular social compatibility cost
function. Also note that the negative of a supermodular
function is a submodular function, and minimizing the
above supermodular functions is equivalent to maximiz-
ing the negative of these functions.

2.2.1 A Note on the Choice of Cost Function
From the previous lemma, it appears as though the di-
ameter and the MST cost functions cannot be captured
within the submodular functions framework. However,
we would like to mention that these two functions have
certain limitations, such as instability, and these limita-
tions were rectified in the improved functions proposed
by Kargar et al [8] like the sum of distances and the
leader distance functions, which, on the other hand, are
supermodular. Thus, we can say that while some of the
original cost functions to measure social compatibility
cannot be modelled in the proposed submodular frame-
work, their modified counterparts can be. The submod-
ular framework, therefore, still holds ground and is use-
ful despite a negative result in Lemma 2.4.

2.3 Submodularity in Teaming Cost The next
important consideration in the team formation problem
is teaming cost which can be measured in many ways.

• Team Size: Assuming each expert is as valuable
(or expensive) as any other expert, a simple way to
measure teaming cost would be its size.

• Personnel Cost [9]: For a given team T , and a
given project P , the cost of availing the services
of experts for this project can be modeled as∑

v∈T
∑

s∈P∩Sv
cost(v, s), where cost(v, s) is the

cost of availing the services of expert v for skill s.

If we let fteam(·, P) : 2V 7→ R+ denote the cost of
forming team for a given project by using any of the
above functions, our goal should be to minimize the
function fteam(·, P). In what follows, we highlight the
submodular properties of the teaming cost function.

Lemma 2.5. The function fteam(·, P) is a modular
function if it is defined as either team size or the per-
sonnel cost.

Proof. See Appendix B.

2.4 Submodularity of Miscellaneous Require-
ments Apart from skill coverage, social compatibility,
and teaming cost, there could be many other design con-
siderations while forming a team. In what follows, we
highlight two such obvious considerations which, to the
best of our knowledge, have not been looked in the lit-
erature so far. We also show that these considerations
can be captured within the submodularity framework.

• Redundant Skills Avoidance: Recall that the
skill coverage just requires having an expert in the
team for every skill required in a project. This
does not rule out the possibility that an expert
may have multiple skills in the selected team. It
is quite possible in some situations that a project
requires heterogeneity in the pool of skills available
in the selected team. For example, this can help
balancing the work load across the team members
[1]. For such a case, we can define a cost function
called team redundancy cost fred(·) : 2V 7→ R+ as
follows

fred(T) =
∑

(vi,vj)∈T×T r(vi, vj)(2.5)

where r(vi, vj) measures the pairwise overlap of
skills between team members vi and vj . In the team
formation problem, our goal should be to minimize
this function.

• Inclusion of Selected Experts: In many sit-
uations, a project may require the inclusion of a
predefined set of experts in the final team for vari-
ous reasons. This requirement can be captured by
means of defining a function called experts inclu-
sion fexpInc(·) : 2V 7→ R+ as follows

fexpInc(T) =
∑

v∈T wv(2.6)

where wv ≥ 0 is a weight assigned to an expert
v ∈ V . We can always assign very high positive
weights to those experts whose inclusion is a must
in the final team and set a very low weight for all
the other experts. In the team formation problem,
our goal should be to maximize this function.

Lemma 2.6. fred(·) is a supermodular function and
fexpInc(·) is a modular functions.

Proof. See Appendix B.

2.5 The Overall Formulation Based on the sub-
modular structure shown so far for various design con-
siderations, it is apparent that the team formation prob-
lem can be posed as the following optimization problem

max
T∈2V

foverall(T, P,G)(2.7)

where, foverall(·, P,G) : 2V 7→ R is a submodular
function encapsulating all the design considerations.
That is,

foverall(·, P,G) = αskillfskill(·)− αsocialfsocial(·, P,G)

− αteamfteam(·, P)− αredfred(·)
+ αexpIncfexpInc(·)

Non-negative coefficients αskill, αsocial, αteam,
αred, αexpInc ≥ 0 represent the relative importance for
these design considerations. By making use of previ-
ous lemmas, it is easy to verify that foverall(·, P,G) is a
submodular function. Formulation (2.7) suggests that
the team formation problem, in general, can be posed
as an unconstrained submodular function maximization
problem which is an NP-hard problem for arbitrary sub-
modular functions [5]. A few critical observations are in
order with regard to this formulation.

2.5.1 Non-Negative Non-Monotone Function
It is easy to see that the function foverall(·, P,G) could
be non-monotone in general. For example, inclusion of
an extra member to the set can increase the value of
the function if this new member adds a hitherto absent
skill and does not increase the social cost too much.
However, the reverse of this is also possible if the new
member brings no new skill to the team but adds a
high social cost for its inclusion. Further, this function
foverall(·, P,G) could be negative as well. However, it
is also easy to check that for a given project P and a
graph G, this function is bounded below by a constant
on the negative side because each of its component func-
tion is bounded below by a constant. Using this lower
bound on this function, we can transform this func-
tion by adding a constant so that it always stays posi-
tive. Note that adding a constant does not change the
property of submodularity. From now onwards, we will
adhere to the convention that foverall(·, P,G) is non-
negative and non-monotone.

2.5.2 Skill Coverage as a Hard Constraint In
this formulation, skill coverage is a soft constraint. This

implies that some of the skills required for a project
P could be missing in the optimal solution. This
can, however, be easily overcome simply by choosing
sufficiently high values for the coefficients αskill, and Cs

in the overall formulation which would effectively make
the skill coverage constraint a strict constraint.

2.5.3 Generalized Task This formulation can also
be used for the scenario where it is required to have a
certain minimum number of experts against each skill.
For this, we can augment the definition of the project
P where we replicate a skill, say s, as many times as
the required minimum number of experts for that skill.
If minimum number of experts required for this skill
is ns then we assign a different and unique label to
each of these ns replicas of the skill s, denote them by
s1, s2, . . . , sns . Similarly, for all the experts who possess
the skill s, we replicate them into ns different users with
identical properties except that the ith replica possesses
the skill si instead of skill s.

In view of this extension, there is no loss of gen-
erality even if we consider the team formation problem
where it is required to have at least one expert in the
team for every skill in project P . All approximation al-
gorithms presented in the next section are designed for
this setting.

3 Algorithm

In general, submodular function maximization is an
NP-hard problem. For monotone submodular func-
tions, unconstrained maximization is trivial and ap-
proximations for constrained maximization have been
well explored in the literature. For example, the well
known greedy scheme of Nemhauser et al [13] renders
an approximation factor of (1 − 1/e). However, the
problem of finding the maximum for an arbitrary non-
monotone submodular function with or without con-
straints is notoriously hard even to approximate. To the
best of our knowledge, approximation schemes for un-
constrained maximization of non-monotone submodular
function have only been obtained for functions which
are non-negative [4, 7]. A 2/5-approximation algorithm
for such problems were first given by Feige et al [4].
This is a randomized local search algorithm. Gharan
and Vondrák [7] introduced a similar algorithm based
on simulated annealing which improved the approxi-
mation factor to 0.41. We have adopted Gharan and
Vondrák’s algorithm to get an approximate solution for
the general team formation problem given in (2.7). A
high level description of this algorithm is given in Al-
gorithm 1. In what follows, we describe the flow of
this algorithm. For brevity, we denote foverall simply
as f . The algorithm starts with a given set of ex-
perts V , a social graph G, and the objective function

Algorithm 1 Simulated Annealing Algorithm for Team
Formation Problem

Input: Set of experts V , social graph G, project P ,
function f(·, P,G) : 2V → R+

Output: Team T ∗

1: T ∗ ← ∅
2: T ← ∅
3: for p← 1/2; p ≤ 1; p← p+ θ do

4: while ∃v ∈ V such that Êp[f(Rp(T∆{v}))] ≥
Êp[f(Rp(T))] do

5: T ← T∆{v}
6: if f(T ∗) ≤ f(T) then
7: T ∗ ← T
8: end if
9: if f(T ∗) ≤ f(V − T) then

10: T ∗ ← V − T
11: end if
12: end while
13: end for
14: return T ∗

foverall(·, P,G) : 2V → R+. Note that we have assumed
that the function foverall(·, P,G) has already been con-
verted into a non-negative function by adding a suffi-
ciently high constant as discussed earlier.
The algorithm begins with an empty team T ∗ and a con-
tinuously changing placeholder team T . The for loop
(Steps 2-13) iterates over the probability parameter p
starting from 1/2 and going all the way upto 1 with an
increment of θ in every step. Typically, we assume the
quantization parameter θ = 1/nk where n = |V | and k
is typically chosen as 3.
For each value of p, given a seeding set T , define Rp(T)
as the set obtained by deleting elements from T and
adding elements to T independently with probability
(1 − p). That is, Rp(T) is a set obtained from T such
that ∀v ∈ T, v ∈ Rp(T) independently with proba-
bility p and ∀v /∈ T, v ∈ Rp(T) independently with
probability (1 − p). During Steps 4-12, we continu-
ously look for an element v ∈ V such that its addi-
tion to the set T (if it is not already present in the
set T) or deletion from the set T (if it is present in
T) would increase the expected value of the function
f(Rp(T, P,G)). That is, we look for an element v such
that Ep[f(Rp(T∆{v}))] ≥ Ep[f(Rp(T))], where ∆ de-
notes the symmetric difference of two sets such that
T1∆T2 = (T1\T2) ∪ (T2\T1). In practice, we work with

an estimate of Ep[f(Rp(·))], denoted by Êp[f(Rp(·))],
which is obtained via sampling.

For every element v ∈ V and the set T ⊆ V such
that condition of while loop (Step 4) is true, we check
whether the objective function value can be increased

by replacing T ∗ with T∆{v} or V \ (T∆{v}) during
the Steps 5-10. If yes, then we replace T ∗ with the
appropriate set.

The Algorithm 1 has been shown to return a 0.41-
approximate solution with high probability [7].

3.1 Insights About the Algorithm In this section,
we bring out some finer points about this algorithm.

Note that in practice, searching for an element in
Step 4 of the algorithm can be done in a systematic
manner as it is order independent. In our case, we first
search over all the experts outside the current set T and
consider them for inclusion and then subsequently, we
consider all the experts within the current set T and
consider them for exclusion. However, the condition
in the while loop might cause the algorithm to cycle
forever. To prevent this, we can also impose a bound
κmax on how many times the search is conducted before
changing the value of the parameter p.

At the end, when we have p = 1. It is easy to
see that Rp=1(T) = T and therefore Êp[f(Rp=1(T))] =
f(T). In this special case, this algorithm becomes the
deterministic local search algorithm presented by Feige
et al [4] whose approximation factor is at least 1/3.

Another point to note is that we never really need
the exact value of the constant which is added to the
function foverall(·, P,G) to make it non-negative at any
step of the algorithm. The only times when the actual
function value is computed is either in Step 4, 6, or 9.
In all these cases, it can be seen that the constant term
appears on both sides of the inequality and hence gets
cancelled out. Therefore, we never really need to specify
the exact value of this constant.

Finally, the last point is regarding the skill weights
Cs. Since, we are performing a repeated search over the
entire set V , if Cs are chosen high enough, the algorithm
will end up including experts in the team until all the
skills get covered. In fact, for those skills which are hard
constraints, we might as well modify the T ∗ updating
conditions in Algorithm 1 to include the constraint that
the T ∗ will be updated to T (or V \ T) only if T (or
V \ T) covers more skills than T ∗.

4 Experiments

We used a snapshot of DBLP data taken on July 31,
2013 to conduct our experiments. Our experimental
setup is pretty much similar to [10]. We worked with
only those entries in DBLP dataset which correspond to
papers published in the areas of Database (DB), Data
Mining (DM), Artificial Intelligence (AI), and Theory
(T) conferences. For each of these four areas, we consid-
ered the following conference venues: DB={SIGMOD,
VLDB, ICDE, ICDT, EDBT}, DM={WWW, KDD,
SDM, PKDD, ICDM}, AI={ICML, ECML, COLT,

UAI}, and T={SODA, FOCS, STOC, STACS}. We re-
fer to these selected sets of papers as the DBLP dataset.
The input for the team formation problem is generated
as follows. The set of experts V consists of the set of au-
thors that have at least 3 papers in the DBLP dataset.
The skillset Sv of an expert v ∈ V consists of the set
of terms that appear in at least two titles of papers in
DBLP dataset that he has co-authored. This procedure
creates a set V consisting of 9186 individuals and 4013
distinct skills. We created a social graph G = (V,E)
over this set V of experts where two experts vi and vj
are connected by an edge if they have co-authored at
least 2 papers. This resulted in 19642 edges over these
9186 nodes. The weight wij of an edge connecting ver-
tices vi and vj is given by 1 − |zi ∩ zj |/|zi ∪ zj |, where
zi and zj are the total number of papers authored by
vi and vj , respectively. The edge weights essentially
represent the Jaccard distance between experts and the
shortest path distance between two experts is computed
using these pairwise Jaccard distances.

4.1 Performance Evaluation In this section, we
evaluate the performance of the simulated annealing
algorithm for the team formation problem given in
Algorithm 1. We evaluate its performance on three
metrics - team size, missing skills, and connectivity.

In our experiments, we generated a project P as
follows. We chose one of the research areas among DB,
DM, AI, and T. Then, we randomly picked t required
skills from the terms appearing in papers published in
conferences belonging to this area. We report the results
for t = {2, 4, . . . , 20}. For each t, we generated 100
random projects and computed the Average Team Size
(ATS), Average Number of Missing Skills (AMS), and
Average Number of Connected Components (ACC) by
using the simulated annealing based algorithm. These
results are reported in Figure 1. By missing skills,
we mean the skills in the given project P that are
not present in any of the team members. In our
implementation, we chose θ = 0.1. We repeated these
experiments with varying value of αskill but fixed value
of αteam = αsocial = 1. Observe in Figure 1 that as
we increase αskill, the ATS starts increasing because we
are putting more emphasis on meeting required skills.
As a consequence, the AMS value starts decreasing.
As far as ACC is concerned, it stays below ATS for
αskill = 256 but coincides with ATS for αskill = 8.
Therefore, we can say that as αskill increases, the
team starts becoming more and more connected. These
experiments suggest an important point that choosing
the right values of these hyper-parameters Cs, αsocial,
and αteam is quite crucial and it could be somewhat
messier. An interesting open problem at this moment

2 4 6 8 10 12 14 16 18 20
10

0

10
1

10
2

No. of Skills

Lo
g

S
ca

le
Performance Metrics for Alpha−Skill =8

ATS and ACC
AMS

(a) ATS, AMS, and ACC Scores for αskill = 8

2 4 6 8 10 12 14 16 18 20
10

−1

10
0

10
1

10
2

10
3

10
4

No. of Skills

Lo
g

S
ca

le

Performance Metrics for Alpha−Skill = 256

ATS
ACC
AMS

(b) ATS, AMS, and ACC Scores for αskill = 256

Figure 1: Performance of Simulated Annealing Based Algorithm for Team Formation Problem

would be to automatically learn the right values for
these hyper-parameters.

5 Conclusions and Future Work

This papers shows that the well known team forma-
tion problem can be formulated as an unconstrained
submodular function maximization problem in its full
generality, where the objective function is non-negative
and non-monotone. The merit of this formulation lies
in the fact that it provides lots of modeling flexibility
and robustness. A wide range of design criteria can
be added or removed from the model without altering
the algorithm. This work opens up plenty of opportu-
nities for further investigations. In particular, setting
the relative weights of various design considerations is
a daunting task in practice. Moreover, the proposed
simulated annealing algorithm’s running time could be
unacceptable in certain worst-case situations and it still
remains an open question whether one can improve on
this without compromising much with solution quality.

Acknowledgments

Authors would like to acknowledge Prof. H. Narayanan,
IIT Bombay for several useful discussions.

References

[1] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gio-
nis, and S. Leonardi. Online team formation in social
networks. In WWW 2012, Lyon, France, April 2012.

[2] A. Baykasoglu, T. Dereli, and S. Das. Project team se-
lection using fuzzy optimization approach. Cybernetics
and Systems, 38(2):155 –185, 2007.

[3] S. J. Chen and L. Lin. Modeling team member
characteristics for the formation of a multifunctional
team in concurrent engineering. IEEE Transactions
on Engineering Management, 51(2):111 –124, 2004.

[4] U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing
non-monotone submodular functions. SIAM Journal
on Computing, 40(4):1133–1153, 2011.

[5] S. Fujishige. Submodular Functions and Optimization,
volume 58 of Annals of Discrete Mathematics. Elsevier,
second edition, 2005.

[6] A. Gajewar and A. D. Sarma. Multi-skill collaborative
teams based on densest subgraphs. In SDM, 2012.

[7] S. O. Gharan and J. Vondrák. Submodular maxi-
mization by simulated annealing. In Proceedings of
the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1098–1116. SIAM, 2011.

[8] M. Kargar and A. An. Discovering top-k teams of
experts with/without a leader in social networks. In
CIKM 2011, Glasgow, Scotland, UK, October 2011.

[9] M. Kargar, A. An, and M. Zihayat. Efficient bi-
objective team formation in social networks. In
ECML/PKDD 2012, 2012.

[10] T. Lappas, K. Liu, and E. Terzi. Finding a team of
experts in social networks. In KDD 2009, July 2009.

[11] C.-T. Li and M.-K. Shan. Team formation for gen-
eralized tasks in expertise social networks. In IEEE
International Conference on Social Computing, 2010.

[12] A. Majumder, S. Datta, and K. Naidu. Capacitated
team formation problem on social networks. In KDD,
pages 1005–1013, 2012.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing sub-
modular set functions - I. Mathematical Programming,
14(1):265–294, 1978.

[14] H. Wi, S. Oh, J. Mun, and M. Jung. A team formation
model based on knowledge and collaboration. Expert
Syst. Appl., 36(5):9121–9134, 2009.

[15] A. Zzkarian and A. Kusiak. Forming teams: an
analytical approach. IIE Transactions, 31:85–97, 2004.

Appendix

Please refer to https://sites.google.com/site/

avradeepbhowmik1001/research.

